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Abstract 

In order to make good decisions in retirement planning, consumers’ and advisors’ need to 

understand the return potential and the risks of the respective products. Usually, risk-return 

indicators are based on nominal measures, derived from the probability distribution of 

nominal wealth at the end of the product’s term. For consumers, however, real benefits (i.e., 

the benefits in ‘today’s purchasing power’) are more relevant than nominal benefits. We 

show that real risk-return characteristics can be structurally different from nominal risk-

return characteristics, in particular for products that come with some nominal guarantees.  

Firstly, we derive from economic arguments and existing literature why the return of certain 

assets, particularly stocks, exhibits a positive correlation with inflation over long periods of 

time. We argue that such long-term effects need to be considered in an analysis of long-term 

savings processes. Secondly, we introduce a capital market model where expected equity 

returns depend on inflation implying such a positive correlation over long time horizons and 

analyze how fundamental (simple) results change if we focus on real returns. For instance, 

we show that in our model the equity ratio of the utility maximizing portfolio in the famous 

Merton-problem does not change when utility of the real benefit is considered whereas the 

real risk and return of a simple mix between a bond and an equity investment can heavily 

deviate from the nominal result (particularly for long time horizons). We also analyze how 

the real risk-return characteristics of typical retirement savings products structurally deviate 

from their nominal counterparts. We particularly show that, under certain circumstances, an 

increase in (nominal) guarantees can increase real risk. Note, we assume that – as is currently 

the case in practice – guarantees of typical products are given in nominal terms (and bonds 

with nominal notional values are used as ‘safe assets’). Finally, we derive implications for 

consumers, financial advisors, and policy makers. 
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1 Introduction 

Finding the optimal asset allocation for long term savings processes, e.g., in the context of 

retirement planning, is very complex and has been intensively discussed in the literature. 1 

However, theoretically optimal solutions are in general not practically feasible (or cannot 

even be calculated since consumers are unable to specify their utility function or bequest 

motive). Hence, in practice consumers (and/or their financial advisors) are not so much 

interested in finding the optimal asset allocation but rather a suitable product out of a 

range of available products. This argument is in particular used in Graf et al. (2012) as a 

motivation to use so-called risk return-profiles (i.e., a suitable visualization of the probability 

distribution of a product’s benefits) when explaining products to consumers. 

In order to improve consumers’ and advisors’ ability to make decisions in retirement 

planning, they need to gain a sound understanding of the return potential and the associated 

risks of the respective products. Consequently, more and more transparency regulation has 

become effective in many countries (e.g., the Pan-European requirement of drawing up key 

information documents for so-called PRIIPs2). Typically, under such regulation, certain 

allegedly simple, meaningful and easy to understand risk-return indicators have to be 

disclosed to the consumer before a product is purchased.  

Usually, risk-return indicators are based on nominal measures, e.g., derived from the 

probability distribution of nominal wealth at the end of the product’s term.3 Such nominal 

measures can educate consumers that a product with a higher expected return is in general 

also riskier. For instance, if in a fund with a constant mix between equity/stock investments 

and bonds (denoted as ‘balanced fund’ in what follows) the equity ratio is increased, both, 

the product’s expected return and the product’s risk typically4 increase. Similarly, if in some 

guaranteed product the guarantee level is increased, then typically, both, the expected return 

 
1  Cf. e.g. Cairns et al. (2006) or Gerrard et al. (2010) and references therein to name only very few who solve 

the asset allocation problem in the context of retirement planning within an expected utility setting. 

2  Cf. European Union (2014). 

3  The requirements for the so-called Pan-European Personal Pension Product (PEPP) are an exception, since 

here inflation risk shall be assessed as part of the product disclosure. However, a model used in a 

corresponding paper by EIOPA (cf. EIOPA, 2020) does not consider any correlation between inflation and 

investment returns. Hence, in this model inflation impacts the risk-return characteristic of all products in 

the same way. 

4  There is, of course, an exception if the equity ratio is close to 0, where an increase of this ratio can lead to 

a decrease in risk due to diversification effects.  
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and the risk decrease. The message to the consumer seems to be crystal-clear: ‘A reduction 

in the expected return is the price you pay for a higher degree of safety.’  

In the present paper, however, we argue that for a typical consumer, real benefits (i.e., the 

benefits in ‘today’s purchasing power’) are more relevant than nominal benefits. We further 

show that real (i.e., inflation-adjusted) risk-return characteristics can be structurally different 

from nominal risk-return characteristics. In particular, we show that the transition from 

nominal to real risk-return characteristics can impact different products in a different way. 

Under certain circumstances, a product that is less risky than a competing product in nominal 

terms can be riskier than the competing product in real terms. Under such circumstances, a 

risk averse consumer who is willing to give up some return potential in order to ‘buy’ 

additional safety, would actually give up return potential and end up with even more risk. 

Hence, typically used nominal risk-return indicators can potentially misguide consumers – 

particularly in long-term savings processes which are relevant in the context of old-age 

provision. 

We would like to stress that our focus is not on the (trivial) statement that the real value of 

future wealth of any investment will be diminished by inflation. From this trivial statement 

it is often deduced, that the ‘target wealth’ at the retirement date should be adjusted for 

expected inflation. Our focus, in contrast, is on the uncertainty of inflation and its 

potentially different impact on real risk-return characteristics of different investments: A 

product that uses assets that are correlated with inflation tends to have a higher (lower) 

payout if inflation is high (low) during the term of the product. Such a product is less risky 

in real terms than a product that comes with the same probability distribution of terminal 

wealth in nominal terms but has a lower correlation with inflation.  

In this paper, we analyze different aspects of nominal vs. real risk-return characteristics that 

are relevant for long-term savings processes in retirement planning. Firstly, we derive from 

economic arguments and existing literature why the return of certain assets exhibits a 

positive correlation with inflation over long periods of time. Secondly, we introduce a 

capital market model where expected equity returns depend on inflation implying such a 

positive correlation over long time horizons and analyze how fundamental (simple) results 

change if we focus on real returns. For instance, we show that in this model, when real 

benefits are considered the optimal stock ratio for a simple mix between a bond and a stock 

can heavily deviate from the corresponding nominal result (particularly for long time 

horizons). We also consider typical retirement savings products with and without (nominal) 

guarantees and analyze how their real risk-return characteristics deviate from the nominal 

risk-return characteristics. We particularly show that, under certain circumstances, an 

increase in (nominal) guarantees can increase real risk. Finally, we derive implications for 

consumers, financial advisors, and policy makers. 
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Note that in all our analyses, we analyze risk-return characteristics in real terms and still 

assume that – as is currently the case in practice – guarantees of typical products are given 

in nominal terms and that bonds with nominal notional values are used as ‘safe assets’ in 

products with balanced funds or with embedded guarantees.5  

2 Long-term correlation between inflation and stocks 

The so-called generalized Fisher-hypothesis (cf. Fisher, 1930) states (in the words of 

Gultekin, 1983) that ‘the expected real return on common stocks and expected inflation rate 

vary independently so that, on average, investors are compensated for changes in purchasing 

power’, i.e. stock/equity returns should be positively correlated with inflation. Over a rather 

short time horizon, however, often a negative correlation between inflation and the equity 

market can be observed which is sometimes referred to as ‘equity return–inflation puzzle’. 

Practitioners often argue that this negative correlation is a consequence of central banks 

increasing interest rates when inflation rises making bonds comparatively more attractive 

leading to a decreasing demand in equities. The most famous theoretical explanation is 

Fama’s (1981) ‘proxy hypothesis’6, stating7 that the apparent anomalous relationship 

between equity returns and inflation is simply proxying the positive relationship one would 

expect between equity prices and real fundamentals.  

Since our paper is concerned with retirement saving, i.e., saving over a time horizon that 

may very well stretch over several decades, we are more concerned about the long-term 

correlation between equity-returns and inflation. Intuitively and simplified, one would 

expect a positive correlation between equity markets and inflation over a long time horizon 

for the following reason: Picture a scenario of very low inflation over the next, say, 30 years, 

and a scenario of very high inflation over the same time horizon. In the low (high) inflation 

scenario, a company would sell its products in 30 years at rather low (high) nominal prices 

and would also have rather low (high) nominal expenses, e.g., for paying its employees’ 

salaries or buying raw materials needed to produce its products. Ceteris paribus, after 30 

years the ratio between the value of the company and the price of the product it produces 

should be the same in both scenarios. Since the ceteris-paribus-assumption is not exactly 

 
5  The market for inflation linked bonds is not very deep. Products with guarantees in real terms can rarely be 

found and are to the best of our knowledge not being offered at all for regular premium payments, cf. also 

Graf et al. (2014). 

6  testable implications of which have e.g. been confirmed by Gallagher and Taylor (2002). 

7  in the words of Gallagher and Taylor (2002) who also derive and confirm testable implications of the proxy 

hypothesis. 
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fulfilled in practice, the correlation between equity returns over a long time horizon and 

inflation over the same time horizon will of course not be a perfect one but this intuitive 

argument suggests that it should be significantly above zero. Such a positive correlation for 

long time-horizons has been empirically confirmed by, e.g., Boudoukh and Richardson 

(1993)8, Lothian and McCarthy (2004)9 or Rapach (2002)10.  

If this positive correlation exists in practice, this will have important consequences for long 

term savings processes. E.g., an increase of the equity portion of a long-term savings product 

that consists of equities and bonds will (besides increasing the expected return) have two 

opposing effects on the risk:  

1) The volatility of the terminal value increases which makes the product riskier in both, 

nominal, and real terms.  

2) The correlation of the terminal value with long-term accumulated inflation increases, 

reducing the risk in real terms. Hence, the higher the correlation between long-term 

accumulated inflation and long-term accumulated equity returns, the larger is the 

difference between nominal and real risk-return indicators.  

Since an increase of the equity portion has two opposing effects on real risk, it is not clear 

without further analysis, under which circumstances an increase in the equity ratio makes a 

product riskier in real terms. Since in typical guaranteed products a reduction of the 

guarantee level leads to an increase of the equity ratio (or more generally an increase of risky 

assets), the above effects also occur when the guaranteed (nominal) benefit is reduced and 

hence it is also not clear without further analysis, under which circumstances higher 

guarantee levels actually make a product ‘safer’ in real terms. 

In the remainder of this paper, we will analyze these and related questions. 

 
8  The authors come to the conclusion that ‘In conjunction with (i) the evidence across subperiods, (ii) the 

consistency in results using both ex ante and ex post inflation, and (iii) the similarities using different sets 

of instruments, this paper provides strong support for a positive relation between nominal stock returns 

and inflation over long horizons’. 

9  The authors also come to the conclusion that there is a positive correlation over long time horizons: ‘The 

puzzle therefore is not that equities fail the test as inflation hedges, as had been quite widely believed, but 

that they take so long to pass.’ 

10  ‘Overall, our results indicate that inflation does not erode the long-run real value of stocks.’ 
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3 Financial model 

In this section, we introduce the financial model considered in our analyses. This model 

particularly incorporates a dependency between inflation and equity returns by applying a 

so-called ‘cascade approach’. The subsequent Section 3.1 describes the stochastic modeling 

framework whereas Section 3.2 elaborates on the properties and limitations of the introduced 

model. 

3.1 Model description 

We perform our analyses in a model with stochastic interest rates, inflation, and equity 

returns which structurally (i.e. with respect to the relation between the equity, interest and 

inflation-process) coincides with the approach by Brennan and Xia (2002). As basis, we use 

the model that is for example used within the Austrian and the German industry standard for 

so-called ‘products of category 4’ within the abovementioned PRIIPs regime (cf. AVÖ, 2018 

and DAV, 2018 and summarized by Graf and Korn, 2020).11 This model has stochastic 

(nominal) interest rates applying the G2++-model (cf. Brigo and Mercurio, 2006) and further 

assumes a generalized Black-Scholes-model (cf. Black and Scholes, 1973) for equity returns. 

We expand this model by stochastic inflation using the following ‘cascade approach’ for the 

dynamics under the real-world/objective probability measure ‘ℙ’: 

The instantaneous inflation rate 𝑖(𝑡) follows the Vasiçek-model (cf. Vasiçek, 1977) and 

obeys the following stochastic dynamics 

𝑑𝑖(𝑡) = 𝑎𝑖 (𝜃𝑖 − 𝑖(𝑡))𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡), 𝑖(0) = 𝑖0 

for a ℙ −Brownian motion 𝑊𝑖 (𝑡) with 𝜃𝑖 ∈ ℝ, 𝑎𝑖 ≠ 0 and 𝜎𝑖 > 0. Further, we apply the 

G2++-model (that is used for nominal interest rates in the above-mentioned industry 

standards) as our model for real interest rates. This model is driven by two additional 

stochastic processes 𝑥(𝑡) and 𝑦(𝑡) as follows: 

𝑑𝑥(𝑡) = 𝑎𝑥(𝜃𝑥 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑥(𝑡), 𝑥(0) = 0 

𝑑𝑦(𝑡) = 𝑎𝑦 (𝜃𝑦 − 𝑦(𝑡)) 𝑑𝑡 + 𝜎𝑦𝑑𝑊𝑦(𝑡), 𝑦(0) = 0 

 
11  As previously mentioned, the PRIIP-regulation (cf. European Union, 2014) is a Pan-European regulation 

which requires to draw up a key information document for so-called PRIIPs (i.e. packaged retail and 

insurance-based investment products). For calculating the required risk/return indicators an ‘industry 

standard’-model can be used for certain products.  
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where 𝑊𝑥(𝑡), 𝑊𝑦(𝑡) are ℙ −Brownian motions and similar parameter restrictions for 

𝑎𝑥 , 𝑎𝑦, 𝜃𝑥, 𝜃𝑦, 𝜎𝑥 and 𝜎𝑦 hold as for the specification of the inflation process. We further 

assume the Brownian motions to be correlated by 𝑑𝑊𝑥𝑑𝑊𝑦 = 𝜌𝑥,𝑦 𝑑𝑡, 𝑑𝑊𝑆𝑑𝑊𝑖 = 𝜌𝑆,𝑖𝑑𝑡 

and 𝑑𝑊𝑥𝑑𝑊𝑖 = 𝑑𝑊𝑦𝑑𝑊𝑖 = 0.  

Based on the inflation rate and the real interest rate, the nominal short rate 𝑟(𝑡) then follows 

𝑟(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑖(𝑡) + 𝜓(𝑡) 

where 𝜓(𝑡) is a deterministic function to ensure that the model replicates an initial term 

structure of interest rates (cf. Appendix A for more details on the model and especially on 

the derivation of this function). 

Based on 𝑖(𝑡) and 𝑟(𝑡) we introduce with 𝐶𝑃𝐼(𝑡) the development of accrued inflation, i.e., 

the development of a consumer price index and further with 𝐶(𝑡) the development of an 

investment in the (nominal) short rate, i.e., a bank account:  

𝐶𝑃𝐼(𝑡) ≔ exp (∫ 𝑖(𝑠)𝑑𝑠
𝑡

0

) , 𝐶𝑃𝐼(0) = 1 

𝐶(𝑡) ≔ exp (∫ 𝑟(𝑠)
𝑡

0

𝑑𝑠) , 𝐶(0) = 1 

Finally, the equity’s spot price 𝑆(𝑡) obeys the following dynamics: 

𝑑𝑆(𝑡) = 𝑆(𝑡) ⋅ ((𝑟(𝑡) + 𝜆𝑆)𝑑𝑡 + 𝜎𝑆𝑑𝑊𝑆(𝑡)) 

with 𝑊𝑆(𝑡) denoting another ℙ −Brownian motion with 𝑑𝑊𝑆𝑑𝑊𝑥 =  𝑑𝑊𝑆𝑑𝑊𝑦 = 0 and 

𝑑𝑊𝑆𝑑𝑊𝑖 =  𝜌𝑆,𝑖𝑑𝑡 . 

In the following analyses we will also consider equity investments 𝑆𝐴(𝑡) with different 

volatilities 𝜎𝐴 which are also driven by the same Brownian motion 𝑊𝑆(𝑡) and earn an 

adjusted risk premium 𝜆𝐴 = 𝜆𝑆 ⋅ 𝜎𝐴/𝜎𝑆. Hence, the dynamics of 𝑆𝐴(𝑡) read as  

𝑑𝑆𝐴(𝑡) = 𝑆𝐴(𝑡) ⋅ ((𝑟(𝑡) + 𝜆𝐴)𝑑𝑡 + 𝜎𝐴𝑑𝑊𝑆(𝑡)). 

Furthermore, the investment strategies considered below will also contain some fixed 

income investments and therefore we denote by 𝑃(𝑡, 𝑇) the price of a zero-coupon bond at 

time 𝑡 with maturity 𝑇 > 𝑡. This price is derived by means of risk-neutral valuation where 

we consider the above stochastic processes under the risk-neutral pricing measure ‘ℚ’ 

defined by setting the risk premia 𝜃𝑥, 𝜃𝑦 and 𝜆𝑆 to 0 as  

𝑃(𝑡, 𝑇) ≔ 𝔼ℚ [𝑒− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡 |ℱ𝑡 ], 
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where (ℱ𝑡 )𝑡 denotes the natural filtration generated by the Brownian motions. Appendix A.I 

shows that  

𝑃(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
exp(𝐴(𝑡, 𝑇))

 

with  

𝐴(𝑡, 𝑇) =
1

2
(𝑉(𝑡, 𝑇) − 𝑉(0, 𝑇) + 𝑉(0, 𝑡)) −

1 − 𝑒−𝑎𝑥(𝑇−𝑡) 

𝑎𝑥
𝑥(𝑡) −

1 − 𝑒−𝑎𝑦(𝑇−𝑡)

𝑎𝑦
𝑦(𝑡)

−
1 − 𝑒−𝑎𝑖(𝑇−𝑡)

𝑎𝑖

(𝑖(𝑡) − 𝜃𝑖) + (𝑖(0) − 𝜃𝑖) (
1 − 𝑒−𝑎𝑖(𝑇)

𝑎𝑖
−

1 − 𝑒−𝑎𝑖(𝑡)

𝑎𝑖
) 

and 

𝑉(𝑡, 𝑇) =
𝜎𝑥

2

𝑎𝑥
2

((𝑇 − 𝑡) +
2

𝑎𝑥
𝑒−𝑎𝑥(𝑇−𝑡) −

1

2𝑎𝑥
𝑒−2𝑎𝑥(𝑇−𝑡) −

3

2𝑎𝑥

)

+
𝜎𝑦

2

𝑎𝑦
2

((𝑇 − 𝑡) +
2

𝑎𝑦
𝑒−𝑎𝑦(𝑇−𝑡) −

1

2𝑎𝑦
𝑒−2𝑎𝑦(𝑇−𝑡) −

3

2𝑎𝑦

)

+ 2𝜌𝑥,𝑦

𝜎𝑥𝜎𝑦

𝑎𝑥𝑎𝑦

((𝑇 − 𝑡) +
1

𝑎𝑥

(𝑒−𝑎𝑥(𝑇−𝑡) − 1) +
1

𝑏𝑥
(𝑒−𝑏𝑥(𝑇−𝑡) − 1)

−
1

𝑎𝑥 + 𝑎𝑦

(𝑒−(𝑎𝑥+𝑎𝑦)(𝑇−𝑡) − 1))

+
𝜎𝑖

2

𝑎𝑖
2 ((𝑇 − 𝑡) +

2

𝑎𝑖
e−𝑎𝑖(𝑇−𝑡) −

1

2𝑎𝑖
e−2𝑎𝑖(𝑇−𝑡) −

3

2𝑎𝑖

). 

In the above pricing formula, 𝑃𝑀(0, 𝑡) denotes the price of a zero-coupon bond at time 0 

with a maturity of 𝑡 years observed in the market (i.e., the initial term structure of interest 

rates). In our modelling approach, this term structure of interest rates is specified by a 

Nelson-Siegel-Svensson approach (cf. Svensson, 1994) who postulate the spot rate 𝑧(0, 𝑡) 

as  

𝑧(0, 𝑡) =
1

100
⋅ (𝛽0 + 𝛽1 (1 − 𝑒

−
𝑡

𝜏1)
𝜏1

𝑡
+ 𝛽2 ((1 − 𝑒

−
𝑡

𝜏1)
𝜏1

𝑡
− 𝑒

−
𝑡

𝜏1)

+ 𝛽3 ((1 − 𝑒
−

𝑡
𝜏2)

𝜏2

𝑡
− 𝑒

−
𝑡

𝜏2)). 
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We take the required parameters 𝛽0 , 𝛽1, 𝛽2, 𝜏1 and 𝜏2 from the German federal reserve bank 

following Schich (1997) who then sets the corresponding zero-coupon bond prices as  

𝑃𝑀(0, 𝑡) = (1 + 𝑧(0, 𝑡))
−𝑡

. 

3.2 Properties and limitations of the cascade style model 

3.2.1 Properties 

Note that the ‘cascade structure’ of the processes used in our model assumes that the drift 

parameter of the equity process depends on the nominal short rate (and thus inflation). This 

leads to the desired positive correlation between long-term inflation and long-term equity 

returns – even if one assumed a (moderately) negative correlation 𝜌𝑠,𝑖 between 𝑊𝑖  and 𝑊𝑆  

and hence a negative (instantaneous) short-term-correlation between inflation and equity 

returns. 

To illustrate this effect, Figure 1 depicts the correlation coefficient, i.e. 

𝐶𝑜𝑟𝑟(ln(𝑆𝐴(𝑇)), ln(𝐶𝑃𝐼(𝑇))) ≔
𝐶𝑜𝑣(ln(𝑆𝐴(𝑇)),ln(𝐶𝑃𝐼(𝑇)))

√𝑉𝑎𝑟(ln(𝑆𝐴(𝑇)))⋅𝑉𝑎𝑟(ln(𝐶𝑃𝐼(𝑇)))
, of log-returns ln 𝑆𝐴(𝑇) of 

an equity investment for different volatilities and the long-term cumulated (logarithmic) 

inflation rate ln 𝐶𝑃𝐼(𝑇) by considering an investment horizon of 𝑇 = 30 years. In this figure, 

we assume the parameter set underlying our numerical analyses and summarized in Table 1 

in Section 5.2 and calculate the correlation coefficient for different assumptions on the 

instantaneous correlation 𝜌𝑆,𝑖 by setting 𝜌𝑆,𝑖 to 

−100%, −50%, −10%, 0%, 10%, 50%, 100%.12  

 
12 Cf. Appendix A.II for an analytical derivation of the considered correlation coefficient. 
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Figure 1  Model-implied correlation of equity returns and inflation over an investment horizon of 30 years 

for different volatilities of the underlying equity investment and different instantaneous correlation 

coefficients 𝜌𝑆,𝑖 

We can conclude that for reasonable choice of parameters – in particular if the instantaneous 

correlation 𝜌𝑆,𝑖 is set to a moderately negative value as sometimes observed in practice or to 

0% as in the analyses below – our modeling approach yields the empirically observed 

positive correlation between equity returns and inflation over the long run. For rather low 

equity volatilities, the positive long-term correlation between equity and inflation even 

persists for a highly negative instantaneous correlation.  

We also observe that long-term correlation between equity returns and cumulated inflation 

decreases as the volatility of the underlying equity investment increases. Hence, although 

we incorporate the rate of inflation into the equity’s expected return, this model-implied 

correlation can be overweighed by random fluctuations of the equity investment – which in 

our view makes sense from an economical point of view. The equity investment is expected 

to grow ‘in line’ with the realized inflation over the long run, but also bears some ‘inflation-

independent risk’ which is higher for more volatile equity investments.  

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

1
1

%

1
2

%

1
3

%

1
4

%

1
5

%

1
6

%

1
7

%

1
8

%

1
9

%

2
0

%

2
1

%

2
2

%

2
3
%

2
4

%

2
5

%

2
6

%

2
7

%

2
8

%

2
9

%

3
0

%

3
1

%

3
2

%

3
3

%

3
4

%

3
5

%

3
6

%

3
7

%

3
8

%

3
9
%

4
0

%

Volatility 

Correlation coefficient for varying volatility and different instantaneous correlations

-100% -50% -10% 0% 10% 50% 100%



The role of inflation in retirement planning – why reducing nominal risk can increase real risk 

 

 

 10  
 

If we consider a shorter investment horizon of 𝑇 = 5 years as depicted in Figure 2, we 

observe significantly lower correlations in line with the empirical observations cited in 

Section 2. 

 

Figure 2  Model implied correlation of equity returns and inflation over an investment horizon of 5 years for 

different volatilities of the underlying equity investment and different instantaneous correlation 

coefficients 𝜌𝑆,𝑖 

3.2.2 Limitations 

Figure 1 also reveals an undesired property of our model. As the equity’s volatility 

approaches zero, we observe that the resulting correlation coefficient increases. This implies 

that a pure money market investment (with no volatility) provides the ‘best’ inflation hedge 

in our model which clearly contradicts economic results and the more fundamental 

interactions underlying the empirical results of Section 2. From an economic point of view, 

the positive correlation of equity returns and inflation stems from the fact that future profits 

and hence dividends are supposed to grow ‘in line’ with realized inflation which equity 

returns should reflect. Since we do not model these interactions of dividends and subsequent 

valuations of equities explicitly, but rather implicitly by the introduced approach, we get the 

undesired side-effect that our model may yield implausible results when the volatility is 
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reduced ‘too much’ and hence the considered instruments transform from an equity 

investment (where the interactions, esp. dividends can actually be observed) to a non-

dividend paying asset which purely resembles a money market investment and hence the 

economic interactions will not apply. Hence, our model (just like all models) may be a 

suitable choice to analyze certain questions (particularly related to real risk-return 

characteristics of long-term savings processes with ‘risky’ assets) and a poor choice for other 

questions. 

3.2.3 Consequences 

In summary, our model proves to be a good compromise between ease of use and proper 

implementation of underlying economic effects. Nonetheless, caution has to be taken when 

money-market investments or equity investments with very low volatility are considered, 

since then the inflation-adjusted results can be misleading. One example is that the famous 

Merton optimization problem (cf. Merton, 1969) yields the same optimal asset allocation 

between equity investments and the money-market, for both, a nominal or an inflation 

adjusted view (cf. Appendix B for the corresponding derivation). This results from the fact, 

that in the model, the equity investment and the money market account provide the same 

inflation-protection and only differ by their volatility. 

We would like to stress that in the following analyses, no money market accounts are 

considered. Further, we only show results for equity-volatilities of at least 5% where in our 

view the model appears suitable. 

4 Analysis of a simple investment strategy 

In this section we analyze a simple investment strategy which is suitable to illustrate the 

structural differences that occur when utility is derived from real as opposed to nominal 

values. Moreover, despite its simplicity this strategy is of very high practical relevance:13 We 

assume that the client’s single premium14 at 𝑡 = 0 is split into an investment in a zero-coupon 

bond with maturity T and an equity investment. Hence, for an equity ratio of 𝛼, the client’s 

account value 𝐴𝛼(𝑇) at maturity is given by 

𝐴𝛼(𝑇) = (1 − 𝛼)
1

𝑃(0, 𝑇)
+ 𝛼

𝑆𝐴(𝑇)

𝑆𝐴(0)
 

 
13  We will see in Section 5 that this investment strategy is the basic building block in many unit-linked 

products with (nominal) maturity guarantee that are offered for retirement saving. 

14  Without loss of generality, we assume a single premium of 1 in this setting. 
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where 𝑃(0, 𝑇) denotes the price at time 0 of a zero-bond paying 1 unit of currency at time T 

and 𝑆𝐴(𝑇) denotes the spot price at time 𝑇 of an equity investment equipped with volatility 

𝜎𝐴. As a consequence, this static investment strategy comes with a (nominal) guarantee of 

(1 − 𝛼)
1

𝑃(0,𝑇)
 at maturity. 

The inflation-adjusted value �̃�𝛼(𝑇) at maturity is given by 

�̃�𝛼(𝑇): =
𝐴𝛼(𝑇)

𝐶𝑃𝐼(𝑇)
= (1 − 𝛼)

1

𝑃(0, 𝑇) ⋅ 𝐶𝑃𝐼(𝑇)
+ 𝛼

𝑆𝐴(𝑇)

𝑆𝐴(0) ⋅ 𝐶𝑃𝐼(𝑇)
. 

First, we illustrate the risk-return characteristics of this investment strategy assuming the 

capital market assumptions as summarized in Table 1 in Section 5.2. 

The left part of Figure 3 shows the nominal respectively real risk return characteristics of 

this investment strategy for different values of the equity ratio where volatility (i.e. a 

symmetric measure) is used as a risk measure (and expected return as a return measure). We 

observe that the expected real return is always lower than the expected nominal return. Real 

risk is however lower than nominal risk for higher equity ratios and higher than nominal risk 

for lower equity ratios. Nevertheless, within each ‘dimension’ (i.e., nominal or real), we 

always observe that an increase in the equity ratio leads to an increase in both, risk and 

return. 

 

Figure 3  Nominal and inflation-adjusted risk-return characteristics for the simple investment strategy with 

𝛼 = 0, … , 100% (left: volatility, right: 𝐶𝑇𝐸20) 

This changes dramatically if we use a ‘downside based’-risk measure. The results for 

‘𝐶𝑇𝐸20’15 as a risk measure are displayed in the right part of Figure 3. Here, nominally we 

again observe that an increase in the equity ratio leads to an increase in both, risk and return. 

 
15  i.e., the conditional tail expectation to a level of 20%. 
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However, in real terms we observe a remarkably different structure: Risk is minimal for an 

equity ratio of roughly 40%. Above this ratio, an increase in the equity ratio leads to an 

increase in both, risk and return. However, if the equity ratio is reduced below 40%, a 

reduction in the equity ratio leads to a reduction in return and an increase in risk.  

While these results can intellectually be easily understood as a consequence of the positive 

long-term correlation between equities and inflation, they have massive implications on 

retirement planning: If based on nominal risk-return characteristics an equity ratio is selected 

that matches a consumer’s risk aversion, the product’s relevant real risk-return 

characteristics might be completely unsuitable for this consumer. 

Next, we analyze the expected utility resulting from an investment in these simple 

investment strategies. We will measure utility by a CRRA-utility function 𝑢𝛾(𝑥)  

𝑢𝛾(𝑥) = {

𝑥1−𝛾

1 − 𝛾
, 𝛾 ≠ 1

log(𝑥) , 𝛾 = 1

 

with risk aversion parameter 𝛾 and will then maximize 𝔼[𝑢𝛾(𝐴𝛼(𝑇))] and 𝔼 [𝑢𝛾 (�̃�𝛼(𝑇))] 

with respect to the equity ratio 𝛼. Since the considered random variables follow a ‘shifted’ 

lognormal distribution (i.e., a sum of log-normally distributed random variables), no closed 

form solutions for the underlying probability distributions are known. Therefore, for deriving 

the equity ratio 𝛼 which maximizes the expected utility 𝔼 [𝑢𝛾[. ]] for 𝛼 ∈ [0,1], we rely on 

a numerical approach briefly sketched as follows:  

(1) We solve for the root of the (numerically approximated) first derivative of 𝔼 [𝑢𝛾[. ]] for 

fixed 𝛾 as a function of the equity ratio 𝛼 for 𝛼 ∈ [0,1]. 

If such a root 𝛼⋆ exists in [0,1] we conclude that 𝛼⋆ maximizes the expected utility, 

since 𝑢𝛾[. ] is a concave function. 

(2) If a root of the derivative cannot be found within the interval [0,1] we compute the 

expected utility for 𝛼 = 0 and 𝛼 = 1 and accordingly set the utility maximizing equity 

ratio as either 0 or 1. 

𝔼 [𝑢𝛾[. ]] is approximated by means of Monte-Carlo simulation (similar with our numerical 

analyses in Section 5) of the underlying stochastic processes. The required first derivative of 

𝔼 [𝑢𝛾[. ]] interpreted as a function of the equity ratio 𝛼 is then approximated by finite 

differences. Finally, we use a Brent-solver to solve for the corresponding root (cf. Brent, 

1973). 
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The following results illustrate how the optimal (utility maximizing) equity ratio structurally 

changes when real (rather than nominal) returns are considered. We particularly analyze the 

impact of term to maturity and start with a short term of 5 years: Figure 4 shows the optimal 

equity ratio as a function of equity-volatility for different levels of risk aversion for a term 

of 𝑇 = 5 years. 

 

Figure 4  Optimal equity ratio for nominal (left) and inflation-adjusted view (right) of the static strategy for 

a term of 5 years for different risk aversion parameters 𝛾 = 0, 1, … , 5.  

 

Figure 5  Optimal equity ratio for nominal (left) and inflation-adjusted view (right) of the static strategy for 

a term of 30 years for different risk aversion parameters 𝛾 = 0, 1, … , 5. 
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Figure 6  Difference of optimal equity ratio in percentage points (inflation-adjusted less nominal one) for a 

term of 5 years (left) and 30 years (right) for different risk aversion parameters 𝛾 = 0, 1, … , 5  

The left chart of Figure 4 assumes that utility is drawn from nominal values, the right chart 

takes an inflation-adjusted point of view. The left chart of Figure 6 shows the difference 

between the optimal equity ratio under real respectively nominal terms.  

As expected, we observe that the optimal equity ratio is in general decreasing in volatility 

and risk aversion. Since for a rather short investment horizon of 5 years, the correlation 

between equity returns and inflation (and hence the ‘inflation protecting effect’ resulting 

from an equity investment) is rather moderate (cf. Figure 2), volatility is the dominating risk 

in this setting. Hence, the optimal equity ratios in the nominal and real setting are very similar 

unless for a very low volatility, where the relevant correlation is higher and hence a higher 

equity ratio is preferred. This is, however, primarily the case for higher levels of risk 

aversion, since otherwise for low volatility an equity ratio of 100% is optimal in both, 

nominal and real terms. 

Figure 5 shows the same results as Figure 4, i.e., the utility-maximizing equity ratio as a 

function of equity volatility and for different levels of risk aversion, but now for a term of 

𝑇 = 30 years. From this figure and the right panel of Figure 6 which depicts the differences 

in the resulting optimal equity ratios in percentage points, we observe that the optimal equity 

ratio is again decreasing in volatility and risk aversion. But for a longer time horizon, the 

transition from a nominal to a real viewpoint has a much larger effect than for the shorter 

horizon above (confirming our claim that this topic is particularly relevant for long-term 

savings processes, e.g. in the context of retirement savings). The optimal equity ratios in real 

terms are significantly higher than in nominal terms. This now also holds for higher volatility 

and for all levels of risk aversion > 1. Particularly, for consumers with a rather high risk 

aversion (𝛾 =  3, 4, 5), up to a volatility of 20%, the optimal equity ratio in real terms is 

more than 10 percentage points higher than an optimization in nominal terms would indicate. 
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Only for very high volatilities, i.e., when random fluctuations of the equity investment and 

not inflation are the main driver for risk, the nominal and real view lead to very similar 

results.  

Finally, we would like to mention that for 𝛾 = 0 as well as for 𝛾 = 1, the optimal equity 

ratio does not change if we move from nominal to real returns. For 𝛾 = 0, an equity ratio of 

100% is always optimal16 and for 𝛾 = 1 it is easy to show that 𝔼[𝑢𝛾(𝐴𝛼(𝑇))] =

 𝔼 [𝑢𝛾 (�̃�𝛼(𝑇))] + 𝑐 for some constant 𝑐.  

In summary, our results clearly show that (for long time horizons) different investment 

strategies need to be selected for reducing real risk than for reducing nominal risk. In 

particular, we can conclude that for long term savings processes in general higher equity 

ratios should be chosen when risk in real terms is considered the relevant risk. We will see 

in Section 5 that this implies for typical old-age provision products that lower guarantees 

should be chosen when risk in real terms is considered the relevant risk. Also, the topic is 

particularly relevant for investors with a rather high degree of risk aversion. While investors 

with a rather low degree of risk aversion primarily maximize expected return (which is 

accomplished by essentially the same strategy no matter if real or nominal return is 

considered), investors with a rather high degree of risk aversion in contrast put more focus 

on reducing risk.  

These results nicely relate to the two opposing effects on risk explained in Section 2: The 

shorter the investment horizon and the higher the volatility the more relevant is the risk of 

random fluctuations which impacts nominal and real risk alike. If, however, the investment 

horizon is long and volatility is not too high, the uncertainty of inflation becomes a main 

driver of equity performance which increases nominal but decreases real risk of equity 

investment. 

5 Nominal and inflation-adjusted risk-return profiles for typical old-

age provision products  

In this section we derive results for (stylized) products that are typically offered for old-age 

provision. Our analyses will be carried out in the capital market model introduced in Section 

3 and we will use Monte-Carlo simulation to derive our results. In particular, we assume a 

daily simulation of the underlying processes and assume 21 trading days per month. Hence, 

 
16  Note, we did not consider any leverage to potentially increase the equity ratio above 100%. 
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the step size of our simulation exercise is given by Δ𝑡 =
1

12⋅21
 and we further generate 10.000 

trajectories. 

5.1 Considered products 

We consider three types of products that will be explained in more detail in the remainder of 

this subsection:  

(1) a balanced fund investing a certain equity ratio in an equity investment and the rest in a 

zero-coupon bond (using daily rebalancing),  

(2) a guarantee product generating the guarantee by implementing a dynamic CPPI-

strategy17 (on a daily and client-individual basis) and  

(3) a static guarantee product where a zero coupon bond is held to maturity to generate a 

certain guarantee and the rest is invested into an equity fund.18  

We focus on the savings process with a term to maturity of 𝑇 years and assume that each 

product pays a maturity benefit at time 𝑇 which would typically be close to the client’s 

retirement date. We consider products with a single premium 𝑃 and neglect any charges.  

With 𝐴(𝑡) denoting the client’s account value at time 𝑡 and 𝑃𝑒𝑟𝑓𝑡,𝑡+Δ𝑡 denoting the 

performance of the considered products from t to t+Δ𝑡, we set 𝐴(0) = 𝑃 and project the 

client’s account value by 

𝐴(𝑡 + Δ𝑡) = 𝐴(𝑡) ⋅ 𝑃𝑒𝑟𝑓𝑡,𝑡+Δ𝑡 . 

For the guarantee products, we consider different levels 𝑙 of guarantees by defining the 

maturity guarantee 𝐺𝑇(𝑙) at time 𝑇 as 𝐺𝑇(𝑙) = 𝑙 ⋅ 𝑃.  

Balanced funds 

For this product, the premium is invested into a balanced fund which invests partly into a 

zero-coupon bond with duration T and partly in equity. The duration of the bond matches 

the duration of the contract. We assume that the equity ratio of the balanced fund is 

readjusted on a daily basis. Hence, for an equity ratio of 𝛼, the daily performance of the 

client’s account value 𝐴(𝑡) is given by 

 
17  Cf. Black and Perold (1992). 

18  The three products are similar to those analyzed in Graf et al. (2012) which contains more details on the 

modeling approach. Note that the third product is essentially the simple investment strategy analyzed in 

Section 4. 
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𝑃𝑒𝑟𝑓𝑡,𝑡+Δ𝑡 = ((1 − 𝛼)
𝑃(𝑡 + Δ𝑡, 𝑇)

𝑃(𝑡, 𝑇)
+ 𝛼

𝑆𝐴(𝑡 + Δ𝑡)

𝑆𝐴(𝑡)
). 

Dynamic guarantee product (I-CPPI) 

In this product, the well-known CPPI-algorithm allocating money to a riskless asset (in our 

case a zero-coupon bond) and a risky asset (in our case equity) is applied on a client-

individual basis. In theory, the asset allocation of CPPI-products is adjusted continuously 

according to some given rule. In practice however, such re-allocations can only be applied 

at certain points in time. In our numerical analysis (as typically also in practice) this is done 

on a daily basis. At each trading date the provider determines the present value of the 

guarantee (so-called floor) 𝐹(𝑡) ≔ 𝐺𝑇(𝑙) ⋅ 𝑃(𝑡, 𝑇) and invests a multiple 𝑚 of the so-called 

cushion (𝐴(𝑡) − 𝐹(𝑡)) in the underlying equity investment. Therefore, this CPPI rule 

defines a path-dependent equity ratio 𝛼(𝑡) by 

𝛼(𝑡) =
max (0, min (𝐴(𝑡), 𝑚 ⋅ (𝐴(𝑡) − 𝐹(𝑡))))

𝐴(𝑡)
. 

The daily performance of the client’s account value 𝐴(𝑡) is then given by 

𝑃𝑒𝑟𝑓𝑡,𝑡+Δ𝑡 = ((1 − 𝛼(𝑡))
𝑃(𝑡 + Δ𝑡, 𝑇)

𝑃(𝑡, 𝑇)
+ 𝛼(𝑡)

𝑆𝐴(𝑡 + Δ𝑡)

𝑆𝐴(𝑡)
). 

Obviously in practice – when continuous rebalancing is impossible – the product provider 

faces two sources of risk within a CPPI structure: First, the risky asset might lose more than 
1

𝑚
 during one period (this risk is often referred to as gap risk or overnight risk). Second, the 

floor might have changed within one period due to interest rate fluctuations. Since we 

perform analyses from a client’s perspective, we do not investigate how the product provider 

deals with these risks19. Note, in case 𝐴(𝑡) < 𝐹(𝑡) the definition of 𝛼(𝑡) ensures that at most 

the currently available amount 𝐴(𝑡) is invested in the riskless asset and the product can be 

‘underhedged’, i.e. the product provider’s will realize a loss at the contract’s maturity.   

Static guarantee product (zero + underlying) 

This simple but in many markets highly relevant product also invests in a riskless asset (in 

our case a zero-coupon bond) and a risky asset (in our case equity). At the start of the 

contract, the allocation in the riskless asset is determined by investing the present value of 

 
19  Cf. Graf et al. (2012) and references therein for more details. 



The role of inflation in retirement planning – why reducing nominal risk can increase real risk 

 

 

 19  
 

the guarantee, i.e. 𝐹(𝑡), into the riskless asset. The remainder of the premium is then invested 

in the risky asset and no future reallocations will be performed. Hence, the equity ratio is 

then given by:  

𝛼(𝑡) =
max (0, min (𝐴(𝑡), (𝐴(𝑡) − 𝐹(𝑡))))

𝐴(𝑡)
 

Obviously, this product is a special case of the dynamic guarantee product with a multiplier 

of 𝑚 = 1. The daily performance of the client’s account value 𝐴(𝑡) is again given by 

𝑃𝑒𝑟𝑓𝑡,𝑡+Δ𝑡 = ((1 − 𝛼(𝑡))
𝑃(𝑡 + Δ𝑡, 𝑇)

𝑃(𝑡, 𝑇)
+ 𝛼(𝑡)

𝑆𝐴(𝑡 + Δ𝑡)

𝑆𝐴(𝑡)
). 

5.2 Numerical Results  

In this section, we show the results of our analyses for the products described in the previous 

section. 

5.2.1 Assumptions  

In Table 1, we summarize the capital market parameters used in our base case.  

Parameter Value  Parameter Value 

𝑎𝑖  10%  𝛽0 0.32994 

𝜃𝑖 2%  𝛽1 −1.10840 

𝜎𝑖  1%  𝛽2 −1.01065 

𝑖(0) 2%  𝛽3 0.05417 

𝑎𝑥  39.120%  𝜏1 2.93927 

𝜎𝑥 1.239%  𝜏2 0.64206 

𝜃𝑥 −0.330%  𝜆𝑆 4% 

𝑎𝑦 7.850%  𝜎𝑆 20% 

𝜎𝑦 0.832%  𝜌𝑆,𝑖 0 

𝜃𝑦 2.550%  𝜌𝑥,𝑦 −64.500% 

Table 1  Capital market parameters (base case) 
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Furthermore, we consider  

- equity ratios of 𝛼 ∈ {0%, 25%, 50%, 75%, 100% } for the balanced fund,  

- guarantee levels of 𝑙 ∈ {50%, 60%, 70%, 80%, 80%, 100%, 104%} for both guarantee 

products, and 

- a multiplier of 𝑚 = 5 for the I-CPPI product.  

Note that under the term structure of interest rates at the start of the contract, a level of 𝑙 =

 104% is the maximum possible guarantee that can be provided in the base case. 

5.2.2 Nominal risk and return of the products 

Figure 7 shows the nominal risk and return potential of the considered products for a term 

of 30 years using the ‘downside based’-risk measure 𝐶𝑇𝐸20 introduced in Section 4.  

 

Figure 7  Nominal risk and return potential for different equity ratios of the blanced fund and different 

guarantee levels of the guarantee products   

Under nominal terms, the risk and return potential of the products show an intuitive and 

somewhat expected pattern. For a guarantee level of 104%, both guarantee products consist 

of a 100% zero coupon investment and thus coincide with the balanced fund with an equity  
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ratio of 𝛼 = 0. This product comes with the lowest return potential and almost the lowest 

risk.20 Increasing the equity ratio of the balanced fund, or decreasing the guarantee level of 

the guarantee products, at the same time increases the return potential and the risk of the 

products.  

All products show a convex pattern, i.e. the incremental increase of return is getting smaller 

and smaller as we decrease the guarantee (respectively increase the equity ratio of the 

balanced fund) by the same amount (e.g. from a guarantee level of 100% to 90%, from 90% 

to 80%, etc.) whereas the increase of incremental increase of risk is getting larger and larger.  

For the dynamic guarantee product, once the guarantee level has been reduced to 𝑙 = 70%, 

further reductions in the guarantee level only slightly increase the return potential of the 

product. However, the risk of the product still increases with further reductions of the 

guarantee level. For a guarantee level of 𝑙 = 50% and the considered risk measure, the risk 

of the I-CPPI product is even higher than for a pure equity fund (balanced fund with 𝛼 =

100%). The main reason is that (although a guarantee level of 𝑙 = 50% might seem rather 

low) the I-CPPI product requires an investment in the safe asset during the term of the 

contract in some simulation paths (either due to poor performance of the risky asset or due 

to an increase in the floor triggered by falling interest rates). If in some of these paths the 

risky asset increases again, the I-CPPI product participates in this increase to a lesser extent 

than the pure equity fund. Hence, in some of these scenarios, the pure equity fund can show 

a higher return than some of the considered guarantee products. Note however, that this is 

an effect of the considered risk measure 𝐶𝑇𝐸20. If we move further in the distributions’ tail 

(cf. analyses in Section 5.2.4.3), we observe that the guarantee products show a lower risk 

than the pure equity fund.  

5.2.3 Inflation-adjusted risk and return of the products 

Figure 8 shows the inflation-adjusted (‘real’) risk and return potential of the same products 

that had been displayed in Figure 7. 

 

 
20  Note that the balanced fund with an equity ratio of 𝛼 = 25% results (due to diversification) in a slightly 

lower risk than the pure investment in the risk-free investment, cf. also footnote 4. 
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Figure 8  Inflation-adjusted risk and return potential for different equity ratios of the blanced fund and 

different guarantee levels of the guarantee products   

Under real terms, the effect of different guarantee levels / equity ratios on the return potential 

of the products is similar to the one observed under nominal terms: Reducing the guarantee 

level of the guarantee products (or increasing the equity ratio of the balanced fund) always 

leads to an increase in the return potential. The increases are similar to those observed under 

nominal terms and the effect decreases for lower guarantee levels or higher equity ratios. 

The effect on the products’ real risk, however, is completely different from the observed 

effect on nominal risk. In particular, we find that guarantees can be ‘too high’, i.e. above a 

certain ‘critical guarantee level’, a further increase of the guarantee can reduce real return 

while at the same time increasing real risk. This happens, e.g. when the guarantee level is 

increased from 𝑙 = 90% to 𝑙 = 104% in either of the guaranteed products. We observe the 

same pattern for a decrease in the equity ratio of the balanced fund from 𝛼 = 50% to 𝛼 =

25%: The product becomes more risky while at the same time it has a lower expected return.  

For both guarantee products, the guarantee level showing the lowest risk under the 

considered risk measure, is significantly below the maximum possible guarantee. For the 

dynamic guarantee product, the effect of the guarantee level on the product’s risk in real 
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terms is very low. Even products with a guarantee level of 𝑙 = 50% or 𝑙 = 60% show a 

similar risk as products with high guarantee levels.  

The observed effects can be explained by the two opposing effects on real risk explained in 

Section 2: When the equity ratio of the products is increased, risk stemming from the 

volatility of the equity investment is increased, but, at the same time, inflation risk is reduced. 

As a consequence, even for risk averse consumers, the product with the highest guarantee in 

general is not the optimal product after inflation has been taken into account. Product 

versions with very high guarantee levels21 are in this setting ‘dominated’ by products with 

reduced guarantee levels in real terms under the considered risk and return measures. 

5.2.4 Sensitivity Analyses 

In this section, we vary the underlying interest rate environment in Section 5.2.4.1, consider 

the impact of a lower volatility of the underlying equity investment in Section 5.2.4.2 and 

investigate the impact of different risk measures in Section 5.2.4.3. 

5.2.4.1 Environment of higher interest rates 

In a first step, we analyze the impact of a higher interest rate environment on our results. The 

base case assumption set was calibrated to very low (even negative) interest rates prevailing 

in Germany at the end of 2021. As a sensitivity, we now assume an interest rate environment 

similar to that observed by the end of 2022. In 2022, after a long period of low interest rates, 

a hike in interest took place in many countries worldwide mainly explained by many central 

banks increasing their short term rates in order to cope with the globally observed spike in 

inflation. 

Table 2 summarizes the parameter set for the initial term structure of interest rates in this 

section.22 In addition, Figure 9 depicts the interest rates (in terms of spot rates) that feed into 

our numerical analyses for the base case and the sensitivity analysis, respectively. 

 
21  ‘Very high’ in this context always needs to be assessed in line with the maximum possible guarantee that 

depends on the prevailing term structure of interest rates. 

22 Note, in comparison to the base case parameter set (cf. Table 1) we only modify those parameters with 

respect to the initial term structure of interest rates, i.e. 𝛽0 , 𝛽1 , 𝛽2 , 𝜏1 and 𝜏2. 
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Parameter 𝛽0 𝛽1 𝛽2 𝛽3 𝜏1 𝜏2 

Value 0.90536 0.08032 4.34532 4.8861 0.82692 10.61343 

Table 2  Capital market assumptions in sensitivity analysis (only initial term strucutre of interest rates) 

 

Figure 9  Interest rates as prevailing in the base case (end of 2021 in Germany) and the considered 

sensitivity (end of 2022 in Germany) 

Since the higher interest rate environment in this analysis allows for a higher maximum 

possible guarantee (202% for a term of 30 years), we analyze guarantee levels 𝑙 ∈

{100%, 120%, 140%, 160%, 180%, 200%, 202%} in what follows.  

Figure 10 shows the nominal and inflation-adjusted (‘real’) risk and return potential of the 

considered products in case of a higher interest rate environment. 
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Figure 10  Nominal (upper-left part) and inflation-adjusted (lower right part) risk and return potential in case 

of a higher interest rate environment 

From a qualitative viewpoint, the results under a higher interest rate environment show the 

same pattern as in the base case (cf. Figure 7 and Figure 8). The nominal results (upper-left 

part of the chart) reassure the ‘common sense’ that an increase in guarantee levels c.p. 

reduces the expected return, but similarly also the products’ risk. For the inflation-adjusted 

risk-return profiles however, reducing the guarantee level of the guarantee products (or 

increasing the equity ratio of the balanced fund) still leads to an increase in the return 

potential but not necessarily on the real risk. As in the base case, we observe that for 

guarantees above a certain level, a further increase of the guarantee can reduce real return 

while at the same time increasing real risk – however due to the higher interest rates this 

‘critical guarantee level’ is now much higher.  

It is known form behavioral economics that due to loss aversion, products with a guarantee 

level of less than 100% appear very unattractive to many consumers.23 Also, sometimes a 

guarantee level of 100% is required by the legislator.24 Our results clearly show that when 

 
23 Cf., e.g., Dichtl and Drobetz (2011), Ebert et al. (2012) or Ruß and Schelling (2018) and references therein.  

24 This is, e.g., the case with the so-called Riester-Rente, a government subsidized pension product in Germany.  
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interest rates are rather low (as in our base case) a guarantee level of 100% can be objectively 

too high (even for risk averse consumers) since it comes with a lower expected (real) return 

and a higher (real) risk than products with a lower guarantee. In contrast, in an environment 

of rather high interest rates, a guarantee level of 100% delivers a risk-return profile that is 

suitable for some risk aversion also under the inflation-adjusted view. 

5.2.4.2 Lower equity volatility 

In this section, we consider the impact of a lower volatility of the underlying equity 

investment by assuming 𝜎𝑆 = 15% instead of 𝜎𝑆 = 20%. Note, all other parameters remain 

unchanged. In particular, we leave the equity risk premium 𝜆𝑆 = 4% and hence implicitly 

increase the sharpe ratio from 0.2 =
4%

20%
 to 0.27 =

4%

15%
. 

Figure 11 shows the nominal and inflation-adjusted (‘real’) risk and return potential of the 

considered products in case of a lower equity volatility. 

 

Figure 11  Nominal (upper-left part) and inflation-adjusted (lower right part) risk and return potential in case 

of a lower equity volatility 

For a lower equity volatility and unchanged equity risk premium, the relative attractiveness 

of equity investments over zero bond investments increases. This can be observed 
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throughout all result shown. Under both nominal and real terms, reducing the guarantee level 

of the guarantee products (or increasing the equity ratio of the balanced fund) leads to an 

increase in the return potential. The effect on risk apparently is highly influenced by the 

implicit change in the sharpe ratio. Even under nominal terms, reducing the guarantee level 

of the guarantee products (or increasing the equity ratio of the balanced fund) hardly shows 

any impact on the product’s risk. Since also the importance of inflation risk (relative to equity 

risk) increases, the effect on real risk is even more pronounced than above: Under real terms, 

the risk even decreases for products with higher equity ratios. 

5.2.4.3 Impact of the considered risk measure 

While previous results can be explained by the mentioned effects, we should also keep in 

mind that we consider a very specific risk measure 𝐶𝑇𝐸20 in the analyses shown so far. 

Therefore, we analyze the impact of different risk measures when we move further in the 

tail of the considered distributions. So far, we have been focusing on the 𝐶𝑇𝐸20 which e.g. 

in Germany plays an important role when it comes to the risk return classification of 

government subsidized products (c.f. Graf and Korn, 2020). Now, we also analyze the 

conditional tail expectation to a level of 15%, 10% and 5%.  

Figure 12 shows the nominal and inflation-adjusted (‘real’) risk and return potential of the 

considered products for the risk measures 𝐶𝑇𝐸20 (upper-left), 𝐶𝑇𝐸15 (upper-right), 𝐶𝑇𝐸10 

(lower-left), and 𝐶𝑇𝐸5 (lower-right) assuming the base case parameter set (cf. Table 1). 
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Figure 12  Nominal and inflation-adjusted (‘real’) risk and return potential of the considered products for the 

risk measures 𝐶𝑇𝐸20 (upper-left), 𝐶𝑇𝐸15  (upper-right), 𝐶𝑇𝐸10  (lower-left), and 𝐶𝑇𝐸5 (lower-right) 

assuming the base case parameter set 

For lower levels of the conditional tail expectation, obviously, the risk of all products 

increases: We observe a lower CTE-value if we move further into the lower tail of the 

distribution. The risk reducing benefit of guarantees becomes more relevant if lower levels 

of the conditional tail expectation are considered. First, we observe that the ‘critical 

guarantee level’ above which a further increase of the guarantee does not reduce real risk 

any more increases the further we move in the tail. It is worth noting, however, that even for 

the 5% CTE risk measure, this level is between 70% and 80% for the static and about 100% 

(i.e. still roughly 4 percentage points below the maximum guarantee) for the dynamic 

product. This coincides with an average equity ratio over the term of the product of roughly 

25% which is also roughly the (real) risk minimizing equity ratio for the balanced product.  

While under the base case risk measure, reducing the guarantee level of the guarantee 

products (or increasing the equity ratio of the balanced fund) shows only a slight increase of 

the product’s risk under nominal terms, the nominal risk of lower guarantee levels exhibits 

a stronger increase if a CTE-level of 5% is considered.  
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Under real terms, where reducing the guarantee level of the guarantee products below the 

critical level (or increasing the equity ratio of the balanced fund above the real-risk 

minimizing level) has hardly any impact under the base case risk measure, for a lower CTE-

level, the risk increases much more strongly. The events in the tail of the probability 

distribution are hence stronger influenced by equity risk that by inflation risk. 

6 Conclusion 

In this paper, we have argued that for long-term savings processes, real risk-return 

characteristics are more relevant to consumers than their nominal counterparts. We have also 

argued that – due to a positive correlation between long-term inflation and equity returns, 

real risk-return characteristics can be structurally different from nominal risk-return 

characteristics. We have analyzed a variety of typical retirement-savings products and 

confirmed that for popular product designs real risk indeed structurally differs from nominal 

risk. Hence, typically used nominal risk-return characteristics can be misleading for 

consumers.  

While concrete results of course depend on model assumptions, model parameters, 

considered risk measures and product design, the effects we describe appear particularly 

relevant for products with rather low nominal risk. Such products are often dominated by 

other products in real terms, meaning that other products come with a higher real return and 

at the same time a lower real risk. As a rule of thumb, (very) risk averse consumers, who are 

looking for products with a risk close to the lowest possible risk should not buy a product 

with a very low nominal risk / a very high nominal guarantee, but rather go for a higher stock 

ratio / a lower guarantee level although such products come with higher nominal risk.  

These results are relevant for product providers, financial advisors, as well as regulators: 

Product providers should not market the products with the lowest nominal risk (typically 

products with very high guarantees) as the safest options in long-term savings. Financial 

advisors should encourage their (risk averse) clients to invest in products with higher stock 

ratios (lower guarantees). Regulators should not require the use of risk-return classes that 

are based on nominal risk-return characteristics only. 
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A Details of the financial model 

In this appendix we summarize some details of the stochastic model introduced in Section 3 

and especially show how to set up the model such that model-induced prices of zero-coupon 

bonds match those of an initial term structure of interest rates. By doing so, we especially 

derive the arbitrage free prices of zero-coupon bonds 𝑃(𝑡, 𝑇) in this model (cf. Appendix 

A.I.). In addition, we compute the correlation coefficient of equity returns and cumulated 

inflation which was depicted in Section 3.2.1 in Appendix A.II. 

A.I Pricing of zero-coupon bonds and fitting the initial term structure 

of interest rates 

For deriving the arbitrage-free prices 𝑃(𝑡, 𝑇) of a zero-coupon bond at time 𝑡 with maturity 

𝑇 we first consider the underlying stochastic processes under the risk-neutral pricing 

measure ℚ which is obtained from the real-world measure ℙ by just skipping the risk premia 

𝜃𝑥, 𝜃𝑦 and 𝜆𝑆.25 Hence, we consider  

𝑟(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑖(𝑡) + 𝜓(𝑡) 

with  

𝑑𝑥(𝑡) = −𝑎𝑥𝑥(𝑡)𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑥(𝑡), 𝑥(0) = 0 

𝑑𝑦(𝑡) = −𝑎𝑦𝑦(𝑡)𝑑𝑡 + 𝜎𝑦𝑑𝑊𝑦(𝑡), 𝑦(0) = 0 

𝑑𝑖(𝑡) = 𝑎𝑖(𝜃𝑖 − 𝑖(𝑡))𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖 (𝑡), 𝑖(0) = 𝑖0 

where 𝑊𝑥(𝑡), 𝑊𝑦(𝑡) and 𝑊𝑖 (𝑡) are ℚ −Brownian motions. The risk-neutral arbitrage free 

price of a zero-coupon bond at time 𝑡 with maturity 𝑇 is defined as  

𝑃(𝑡, 𝑇) = 𝔼ℚ [𝑒− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡 |ℱ𝑡] = 𝔼ℚ [𝑒− ∫ (𝑥(𝑠)+𝑦(𝑠)+𝑖(𝑠)+𝜓(𝑠))𝑑𝑠
𝑇

𝑡 | ℱ𝑡  ]. 

Set 𝑍(𝑡, 𝑇) ≔ ∫ (𝑥(𝑠) + 𝑦(𝑠) + 𝑖(𝑠))𝑑𝑠
𝑇

𝑡
 and conclude that 𝑍(𝑡, 𝑇) follows a normal 

distribution with some expectation and variance. Hence, to derive 𝑃(𝑡, 𝑇) for given 

(deterministic) 𝜓(𝑡) it is sufficient to analyze 𝑍(𝑡, 𝑇) in more detail.  

We obtain 

𝔼ℚ[𝑍(𝑡, 𝑇)|ℱ𝑡] = 𝔼ℚ [∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

| ℱ𝑡] + 𝔼ℚ [∫ 𝑦(𝑠)𝑑𝑠
𝑇

𝑡

| ℱ𝑡] + 𝔼ℚ [∫ 𝑖(𝑠)𝑑𝑠
𝑇

𝑡

| ℱ𝑡 ] 

 
25 Note, we do not incorporate any risk premium in the process for the modeling of inflation. 
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=
1 − 𝑒−𝑎𝑥(𝑇−𝑡)

𝑎𝑥

𝑥(𝑡) +
1 − 𝑒−𝑎𝑦(𝑇−𝑡)

𝑎𝑦

𝑦(𝑡) + 𝜃𝑖(𝑇 − 𝑡)

+
1 − 𝑒−𝑎𝑖(𝑇−𝑡)

𝑎𝑖

(𝑖(𝑡) − 𝜃𝑖) 

and 

𝑉𝑎𝑟ℚ [𝑍(𝑡, 𝑇)|ℱ𝑡] = 𝑉𝑎𝑟ℚ [∫ (𝑥(𝑠) + 𝑦(𝑠))𝑑𝑠
𝑇

𝑡

| ℱ𝑡] + 𝑉𝑎𝑟ℚ [∫ 𝑖(𝑠)𝑑𝑠
𝑇

𝑡

| ℱ𝑡] 

=
𝜎𝑥

2

𝑎𝑥
2

((𝑇 − 𝑡) +
2

𝑎𝑥
e−𝑎𝑥(𝑇−𝑡) −

1

2𝑎𝑥
e−2𝑎𝑥(𝑇−𝑡) −

3

2𝑎𝑥

)

+
𝜎𝑦

2

𝑎𝑦
2

((𝑇 − 𝑡) +
2

𝑎𝑦

e−𝑎𝑦(𝑇−𝑡) −
1

2𝑎𝑦

e−2𝑎𝑦(𝑇−𝑡) −
3

2𝑎𝑦

)

+ 2𝜌𝑥,𝑦

𝜎𝑥𝜎𝑦

𝑎𝑥𝑎𝑦

((𝑇 − 𝑡) +
1

𝑎𝑥

(e−𝑎𝑥(𝑇−𝑡) − 1) +
1

𝑎𝑦

(e−𝑎𝑦(𝑇−𝑡) − 1)

−
1

𝑎𝑥 + 𝑎𝑌

(e−(𝑎𝑥+𝑎𝑦)(𝑇−𝑡) − 1))

+
𝜎𝑖

2

𝑎𝑖
2 ((𝑇 − 𝑡) +

2

𝑎𝑖
e−𝑎𝑖(𝑇−𝑡) −

1

2𝑎𝑖
e−2𝑎𝑖(𝑇−𝑡) −

3

2𝑎𝑖

). 

For ease of notation setting 𝑉(𝑡, 𝑇) ≔ 𝑉𝑎𝑟ℚ [𝑍(𝑡, 𝑇)|ℱ𝑡 ] , we obtain  

𝑃(𝑡, 𝑇) = 𝔼ℚ [𝑒− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡 |ℱ𝑡 ] = 𝑒− ∫ 𝜓(𝑠)𝑑𝑠
𝑇

𝑡 ⋅ 𝑒−𝔼ℚ[𝑍(𝑡,𝑇)|ℱ𝑡] +
1
2𝑉(𝑡,𝑇)

. 

Fitting the initial term structure of interest rates 

Next consider with 𝑃𝑀(0, 𝑇), ∀𝑇 the initial term structure of interest rates as given by the 

market. We now want to set 𝜓(𝑇), ∀𝑇 such that above pricing formula coincides with the 

pre-specified term structure of interest rates at time 0. 

Hence, we require  

𝑃𝑀(0, 𝑇) =
!

𝑒− ∫ 𝜓(𝑠)𝑑𝑠
𝑇

0 ⋅ 𝑒−𝔼ℚ[𝑍(0,𝑇)|ℱ0] +
1
2𝑉(0,𝑇)

, ∀𝑇 

and thus get  

log 𝑃𝑀(0, 𝑇) = − ∫ 𝜓(𝑠)𝑑𝑠
𝑇

0

−𝔼ℚ[𝑍(0, 𝑇)|ℱ0] +
1

2
𝑉(0, 𝑇) 
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= − ∫ 𝜓(𝑠)𝑑𝑠
𝑇

0

− (
1 − 𝑒−𝑎𝑥𝑇

𝑎𝑥

𝑥(0) +
1 − 𝑒−𝑎𝑦𝑇

𝑎𝑦

𝑦(0) + 𝜃𝑖𝑇

+
1 − 𝑒−𝑎𝑖𝑇

𝑎𝑖

(𝑖(0) − 𝜃𝑖))

 

+
1

2
𝑉(0, 𝑇) 

= − ∫ 𝜓(𝑠)𝑑𝑠
𝑇

0

−
1 − 𝑒−𝑎𝑖𝑇

𝑎𝑖

(𝑖(0) − 𝜃𝑖)
 − 𝜃𝑖𝑇 +

1

2
𝑉(0, 𝑇). 

Taking derivatives with respect to time on both sides further yields 

∂

∂𝑇
log 𝑃𝑀(0, 𝑇) = −𝜓(𝑇) − 𝑒−𝑎𝑖𝑇(𝑖(0) − 𝜃𝑖) − 𝜃𝑖 +

𝜕

𝜕𝑇

1

2
𝑉(0, 𝑇) 

⇔ 

𝑓𝑀(0, 𝑇)

= −𝜓(𝑇) − 𝑒−𝑎𝑖𝑇(𝑖(0) − 𝜃𝑖) − 𝜃𝑖

+
1

2
(

𝜎𝑥
2

𝑎𝑥
2

(1 − 𝑒−𝑎𝑥𝑇)2 +
𝜎𝑦

2

𝑎𝑦
2

(1 − 𝑒−𝑎𝑦𝑇)2

+ 2𝜌𝑥,𝑦

𝜎𝑥𝜎𝑦

𝑎𝑥𝑏𝑥

(1 − 𝑒−𝑎𝑥𝑇)(1 − 𝑒−𝑏𝑥𝑇) +
𝜎𝑖

2

𝑎𝑖
2 (1 − 𝑒−𝑎𝑖𝑇)2) 

where 𝑓𝑀(0, 𝑇) =
∂

∂𝑇
log 𝑃𝑀(0, 𝑇) denotes the instantaneous forward rate implied by the 

initial term structure of interest rates. Thus, we finally obtain 

𝜓(𝑇) = 𝑓𝑀(0, 𝑇) +
𝜎𝑥

2

2𝑎𝑥
2

(1 − 𝑒−𝑎𝑥𝑇)2 +
𝜎𝑦

2

2𝑎𝑦
2

(1 − 𝑒−𝑎𝑦𝑇)2

+ 𝜌𝑥,𝑦

𝜎𝑥𝜎𝑦

𝑎𝑥𝑏𝑥

(1 − 𝑒−𝑎𝑥𝑇)(1 − 𝑒−𝑎𝑦𝑇) +
𝜎𝑖

2

2𝑎𝑖
2 (1 − 𝑒−𝑎𝑖𝑇)2

− 𝑒−𝑎𝑖𝑇(𝑖(0) − 𝜃𝑖) − 𝜃𝑖. 

Pricing of zero-coupon bonds 

After having set 𝜓(𝑠) accordingly, we are now in the position to finally derive 𝑃(𝑡, 𝑇) by  

𝑃(𝑡, 𝑇) = 𝑒− ∫ 𝜓(𝑠)𝑑𝑠
𝑇

𝑡 𝑒−𝔼ℚ[𝑍(𝑡,𝑇)|ℱ𝑡] +
1
2𝑉(𝑡,𝑇)

 

with 

𝑒− ∫ 𝜓(𝑠)𝑑𝑠
𝑇

𝑡 = 𝑒− ∫ 𝜓(𝑠)𝑑𝑠
𝑇

0 ⋅ 𝑒∫ 𝜓(𝑠)𝑑𝑠
𝑡

0 =
𝑃𝑀(0, 𝑇)𝑒𝔼ℚ[𝑍(0,𝑇)|ℱ0]−

1
2𝑉(0,𝑇)

𝑃𝑀(0, 𝑡)𝑒𝔼ℚ[𝑍(0,𝑡)|ℱ0]−
1
2𝑉(0,𝑡)

 

and hence obtain 
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𝑃(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)𝑒𝔼ℚ[𝑍(0,𝑇)|ℱ0]−

1
2𝑉(0,𝑇)

𝑃𝑀(0, 𝑡)𝑒𝔼ℚ[𝑍(0,𝑡)|ℱ0]−
1
2𝑉(0,𝑡)

𝑒−𝔼ℚ[𝑍(𝑡,𝑇)|ℱ𝑡] +
1
2

𝑉(𝑡,𝑇)
 

=
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
exp(𝐴(𝑡, 𝑇))

 

with 

𝐴(𝑡, 𝑇) =  
1

2
(𝑉(𝑡, 𝑇) − 𝑉(0, 𝑇) + 𝑉(0, 𝑡)) −

1 − 𝑒−𝑎𝑥(𝑇−𝑡)

𝑎𝑥

𝑥(𝑡) −
1 − e−𝑎𝑦(𝑇−𝑡) 

𝑎𝑦

𝑦(𝑡)

− 𝜃𝑖(𝑇 − 𝑡) −
1 − 𝑒−𝑎𝑖(𝑇−𝑡)

𝑎𝑖

(𝑖(𝑡) − 𝜃𝑖) + 𝜃𝑖𝑇 +
1 − 𝑒−𝑎𝑖𝑇

𝑎𝑖

(𝑖(0) − 𝜃𝑖)

− 𝜃𝑖𝑡 −
1 − 𝑒−𝑎𝑖𝑡

𝑎𝑖

(𝑖(0) − 𝜃𝑖) 

=
1

2
(𝑉(𝑡, 𝑇) − 𝑉(0, 𝑇) + 𝑉(0, 𝑡)) −

1 − 𝑒−𝑎𝑥(𝑇−𝑡) 

𝑎𝑥
𝑥(𝑡) −

1 − 𝑒−𝑎𝑦(𝑇−𝑡)

𝑎𝑦
𝑦(𝑡)

−
1 − 𝑒−𝑎𝑖(𝑇−𝑡)

𝑎𝑖

(𝑖(𝑡) − 𝜃𝑖) + (𝑖(0) − 𝜃𝑖) (
1 − 𝑒−𝑎𝑖(𝑇)

𝑎𝑖

−
1 − 𝑒−𝑎𝑖(𝑡)

𝑎𝑖

). 

A.II Correlation of cumulated equity returns and cumulated inflation 

In this section we derive the correlation of ln 𝑆𝐴(𝑇) and ln 𝐶𝑃𝐼(𝑇) in our model , i.e. we 

derive 

𝐶𝑜𝑟𝑟(ln(𝑆𝐴(𝑇)), ln(𝐶𝑃𝐼(𝑇))) ≔
𝐶𝑜𝑣(ln(𝑆𝐴(𝑇)), ln(𝐶𝑃𝐼(𝑇)))

√𝑉𝑎𝑟(ln 𝑆𝐴(𝑇)) ⋅ 𝑉𝑎𝑟 (ln(𝐶𝑃𝐼(𝑇)))

. 

For doing so, we study the covariance of ln(𝑆𝐴(𝑇)) and ln(𝐶𝑃𝐼(𝑇)) and obtain 

𝐶𝑜𝑣(ln(𝑆𝐴(𝑇)), ln(𝐶𝑃𝐼(𝑇))) 

= 𝐶𝑜𝑣 (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

+ (𝜆𝐴 − 0.5𝜎𝐴
2)𝑇 + 𝜎𝐴𝑊𝑆(𝑇), ∫ 𝑖(𝑠)𝑑𝑠

𝑇

0

) 

= 𝐶𝑜𝑣 (∫ (𝑥(𝑠) + 𝑦(𝑠) + 𝑖(𝑠) + 𝜓(𝑠))𝑑𝑠
𝑇

0

+ 𝜎𝐴𝑊𝑆(𝑇), ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (∫ (𝑥(𝑠) + 𝑦(𝑠) + 𝑖(𝑠))𝑑𝑠
𝑇

0

+ 𝜎𝐴𝑊𝑆(𝑇), ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

). 

If we assume that 𝑑𝑊𝑥𝑑𝑊𝑖 = 𝑑𝑊𝑦𝑑𝑊𝑖 = 0 and 𝑑𝑊𝑆𝑑𝑊𝑖 = 𝜌𝑆𝑖 hold, we further get 
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𝐶𝑜𝑣(ln(𝑆𝐴(𝑇)), ln(𝐶𝑃𝐼(𝑇))) = 𝐶𝑜𝑣 (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

+ 𝜎𝐴𝑊𝑆(𝑇), ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (∫ 𝜎𝐴𝑑𝑊𝑆(𝑢)
𝑇

0

, ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) + 𝑉𝑎𝑟 (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) . 

and obtain 

𝐶𝑜𝑣 (∫ 𝜎𝐴𝑑𝑊𝑆(𝑢)
𝑇

0

, ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (∫ 𝜎𝐴𝑑𝑊𝑆(𝑢)
𝑇

0

, ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (∫ 𝜎𝐴𝑑𝑊𝑆(𝑢)
𝑇

0

, ∫ (𝑒−𝑎𝑖𝑠𝑖(0) + 𝜃𝑖(1 − 𝑒−𝑎𝑖𝑠) + ∫ 𝜎𝑖𝑒−𝑎𝑖(𝑠−𝑢)𝑑𝑊𝑖 (𝑢)
𝑠

0

) 𝑑𝑠
𝑇

0

) 

= 𝐶𝑜𝑣 (∫ 𝜎𝐴𝑑𝑊𝑆(𝑢)
𝑇

0

, ∫ (∫ 𝜎𝑖𝑒−𝑎𝑖(𝑠−𝑢)𝑑𝑊𝑖(𝑢)
𝑠

0

) 𝑑𝑠
𝑇

0

) 

= 𝜎𝐴𝜎𝑖 ∫ 𝐶𝑜𝑣 (∫ 𝑑𝑊𝑆(𝑢)
𝑇

0

, (∫ 𝑒−𝑎𝑖(𝑠−𝑢)𝑑𝑊𝑖 (𝑢)
𝑠

0

)) 𝑑𝑠
𝑇

0

 

= 𝜎𝐴𝜎𝑖 ∫ 𝐶𝑜𝑣 (∫ 𝑑𝑊𝑆(𝑢)
𝑠

0

, (∫ 𝑒−𝑎𝑖(𝑠−𝑢)𝑑𝑊𝑖 (𝑢)
𝑠

0

)) 𝑑𝑠
𝑇

0

 

= 𝜎𝐴𝜎𝑖 ∫ (∫ 𝜌𝑆𝑖 ⋅
𝑠

0

𝑒−𝑎𝑖(𝑠−𝑢)𝑑𝑢) 𝑑𝑠 =
𝑇

0

𝜎𝐴𝜎𝑖𝜌𝑆𝑖 ∫
1

𝑎𝑖

(1 − 𝑒−𝑎𝑖𝑠)𝑑𝑠
𝑇

0

 

=
𝜎𝐴𝜎𝑖𝜌𝑆𝑖

𝑎𝑖

(𝑇 +
1

𝑎𝑖

(𝑒−𝑎𝑖𝑇 − 1)) 

Finally, the variances 𝑉𝑎𝑟(ln 𝑆𝐴(𝑇)) and 𝑉𝑎𝑟(ln 𝐶𝑃𝐼(𝑇)) are derived as  

𝑉𝑎𝑟(ln 𝑆𝐴(𝑇)) 

= 𝑉𝑎𝑟 (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

+ (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 + 𝜎𝐴𝑊𝑆(𝑇)) 

= 𝑉𝑎𝑟 (∫ 𝑥(𝑠) + 𝑦(𝑠) + 𝑖(𝑠)𝑑𝑠
𝑇

0

+ 𝜎𝐴𝑊𝑆(𝑇)) 

= 𝑉𝑎𝑟 (∫ 𝑥(𝑠) + 𝑦(𝑠)𝑑𝑠
𝑇

0

) + 𝑉𝑎𝑟 (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

+ 𝜎𝐴𝑊𝑆(𝑇)) 

= 𝑉𝑎𝑟 (∫ 𝑥(𝑠) + 𝑦(𝑠)𝑑𝑠
𝑇

0

) + 𝑉𝑎𝑟 (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) + 2Cov (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

, 𝜎𝐴𝑊𝑆(𝑇)) + 𝜎𝐴
2𝑇 
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=
𝜎𝑥

2

𝑎𝑥
2

(𝑇 +
2

𝑎𝑥

𝑒−𝑎𝑥𝑇 −
1

2𝑎𝑥

𝑒−2𝑎𝑥𝑇 −
3

2𝑎𝑥

 ) +  
𝜎𝑦

2

𝑎𝑦
2

(𝑇 +
2

𝑎𝑦

𝑒−𝑎𝑦𝑇 −
1

2𝑎𝑦

𝑒−2𝑎𝑦𝑇 −
3

2𝑎𝑦

 )

+ 
2𝜌𝑥.𝑦𝜎𝑥𝜎𝑦

𝑎𝑥𝑎𝑦

(𝑇 +
(𝑒−𝑎𝑥𝑇 − 1)

𝑎𝑥
+

(𝑒−𝑎𝑦𝑇 − 1)

𝑎𝑦
−

(𝑒−(𝑎𝑥+𝑎𝑦)𝑇 − 1)

𝑎𝑥 + 𝑎𝑦
 )

+
𝜎𝑖

2

𝑎𝑖
2 (𝑇 +

2

𝑎𝑖
𝑒−𝑎𝑖𝑇 −

1

2𝑎𝑖
𝑒−2𝑎𝑖𝑇 −

3

2𝑎𝑖
 )

+ 2
𝜎𝐴𝜎𝑖𝜌𝑆𝑖

𝑎𝑖

(𝑇 +
1

𝑎𝑖

(𝑒−𝑎𝑖𝑇 − 1)) + 𝜎𝐴
2𝑇 

and  

𝑉𝑎𝑟(ln 𝐶𝑃𝐼(𝑇)) = 𝑉𝑎𝑟 (∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

) =  
𝜎𝑖

2

𝑎𝑖
2 (𝑇 +

2

𝑎𝑖
e−𝑎𝑖𝑇 −

1

2𝑎𝑖
e−2𝑎𝑖𝑇 −

3

2𝑎𝑖
). 

B Solution to the Merton-Problem  

In this appendix we consider the famous Merton investment problem (cf. Merton, 1969) in 

the financial model as described in Section 3. Hence, we consider a strategy which 

continuously rebalances the account value 𝐴𝛼(𝑡) between the safe asset (bank account) 𝐶(𝑡) 

and the equity investment assuming a constant equity ratio of 𝛼 ∈ [0,1] and a volatility of 

𝜎𝐴 and a risk premium of 𝜆𝐴 accordingly. The account value of this strategy hence obeys the 

following dynamics: 

𝑑𝐴𝛼(𝑡) = 𝐴𝛼(𝑡)((𝑟(𝑡) + 𝛼𝜆𝐴)𝑑𝑡 + 𝛼𝜎𝐴𝑑𝑊𝑆), 𝐴𝛼(0) = 1. 

In the financial model introduced in Section 3 the account value 𝐴𝛼(𝑇) after 𝑇 years can be 

solved as 

𝐴𝛼(𝑇) = exp (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

+ (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 + 𝛼𝜎𝐴𝑊𝑆(𝑇)). 

Accordingly, we obtain the inflation-adjusted value  �̃�𝛼(𝑇) =
𝐴𝛼(𝑇)

𝐶𝑃𝐼(𝑇)
 of this process as  

�̃�𝛼(𝑇)  =  exp (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

− ∫ 𝑖(𝑠)𝑑𝑠
𝑇

0

+ (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 + 𝛼𝜎𝐴𝑊𝑆(𝑇)) 

= exp (∫ 𝑟̅(𝑠)𝑑𝑠
𝑇

0

+ (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 + 𝛼𝜎𝐴𝑊𝑆(𝑇)), 

where we set  𝑟̅(𝑠) ≔ 𝑥(𝑠) + 𝑦(𝑠) + 𝜓(𝑠).  
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Note, 𝐴𝛼(𝑇) and �̃�𝛼(𝑇)  both follow a log-normal probability distribution. Hence, for some 

normal distributed random variables 𝒩𝐴𝛼(𝑇) and 𝒩𝐴𝛼(𝑇) we have 𝐴𝛼(𝑇) =
𝑑

𝑒𝒩𝐴𝛼(𝑇)  and 

�̃�𝛼(𝑇) =
𝑑

𝑒𝒩�̃�𝛼(𝑇) . The expectation and variance of these normal distributed random 

variables are derived as  

𝔼[𝒩𝐴𝛼(𝑇)] = 𝔼 [∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

] + (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 , 

𝑉𝑎𝑟(𝒩𝐴𝛼(𝑇)) = 𝑉𝑎𝑟 (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

) + 𝛼2𝜎𝐴
2𝑇 

and 

𝔼[𝒩𝐴𝛼(𝑇)] = 𝔼 [∫ 𝑟̅(𝑠)𝑑𝑠
𝑇

0

] + (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇, 

𝑉𝑎𝑟(𝒩𝐴𝛼(𝑇)) = 𝑉𝑎𝑟 (∫ 𝑟̅(𝑠)𝑑𝑠
𝑇

0

) + 𝛼2𝜎𝐴
2𝑇. 

If we consider 𝛾 ≠ 1,26 the expected utility derived from 𝐴𝑇 is 

𝔼[𝑢𝛾 (𝐴𝛼(𝑇))] = 𝔼 [
𝐴𝛼(𝑇)1−𝑦 

1 − 𝛾
] =

1

1 − 𝛾
𝔼[𝑒(1−𝛾)𝒩𝐴𝛼(𝑇)] 

=
1

1 − 𝛾
𝑒(1−𝛾)𝔼[𝒩𝐴𝛼(𝑇)]+0.5(1−𝛾)2𝑉𝑎𝑟(𝒩𝐴𝛼(𝑇)). 

Note, for fixed 𝛾 the expectation and variance of 𝒩𝐴𝛼(𝑇) are a function of the equity ratio 𝛼 

and hence the above expected utility takes its maximum for the maximum of  

(1 − 𝛾)𝔼[𝒩𝐴𝛼(𝑇)] + 0.5(1 − 𝛾)2𝑉𝑎𝑟(𝒩𝐴𝛼(𝑇))

= (1 − 𝛾) (𝔼 [∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

] + (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 )

+ 0.5(1 − 𝛾)2 (𝑉𝑎𝑟 (∫ 𝑟(𝑠)𝑑𝑠
𝑇

0

) + 𝛼2𝜎𝐴
2𝑇) 

which takes its maximum for the same 𝛼 as the function 

(1 − 𝛾)((𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 ) + 0.5(1 − 𝛾)2(𝛼2𝜎𝐴

2𝑇). 

Setting the first derivative with respect to 𝛼 to zero yields 

0 =
!

(1 − 𝛾)(𝜆𝐴 − 𝜎𝐴
2𝛼)𝑇 + (1 − 𝛾)2𝜎𝐴

2𝑇𝛼 

 
26 The case for 𝛾 = 1 naturally follows the same derivations and is hence omitted here.  
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⇔ 

𝛼 =
−(1 − 𝛾)𝜆𝐴𝑇

(1 − 𝛾)(−𝜎𝐴
2𝑇 + (1 − 𝛾)𝜎𝐴

2𝑇)
=

𝜆𝐴

𝛾𝜎𝐴
2 

which equals the well-known solution of the Merton-problem.  

Regarding the expected utility of  �̃�𝛼(𝑇) for fixed 𝛾 we arrive at maximizing  

(1 − 𝛾)𝔼[𝒩𝐴𝛼(𝑇)] + 0.5(1 − 𝛾)2𝑉𝑎𝑟(𝒩𝐴𝛼(𝑇))

= (1 − 𝛾) (𝔼 [∫ 𝑟̅(𝑠)𝑑𝑠
𝑇

0

] + (𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 )

+ 0.5(1 − 𝛾)2 (𝑉𝑎𝑟 (∫ 𝑟̅(𝑠)𝑑𝑠
𝑇

0

) + 𝛼2𝜎𝐴
2𝑇) 

which takes its maximum for the same 𝛼 as the function 

(1 − 𝛾)((𝛼𝜆𝐴 − 0.5𝛼2𝜎𝐴
2)𝑇 ) + 0.5(1 − 𝛾)2(𝛼2𝜎𝐴

2𝑇) 

and hence at the same equity ratio 

𝛼 =
𝜆𝐴

𝛾𝜎𝐴
2 . 

Thus, in our considered modelling framework the optimal equity ratio in the Merton problem 

is the same for the nominal and inflation-adjusted view. However, bear in mind that this is a 

consequence of the model limitations stated in Section 3.2 which imply that the pure money 

market account 𝐶(𝑡) similar to a ‘real’ equity investment serves as an inflation hedge in our 

model and hence the only relevant figure which enters the Merton optimization in the 

inflation-adjusted view is the volatility of the underlying assets. Therefore, it should be of 

no surprise that the results don’t change when we change our perspective from a nominal to 

an inflation-adjusted view.  

In summary, these results should however due to the modelling effects and the implicit 

assumptions on the pure money market be treated with the necessary caution. 

 


